Using Tweets for single stock price prediction

نویسندگان

  • Hongshan Chu
  • Ye Tian
  • Hongyuan Yuan
چکیده

Stock price, been studied for hundreds of years, is one of the most versatile thus hardly predictable things that is deeply rooted in the modern economy. With the trading frequency reaching sub-second and beyond, more advanced real-time stock price prediction tools would be highly demanded in addition to traditional financial analysis. In this work, we applied SVM and Naïve Bayes algorithms to this field and successfully built the connection between stock price and selected keywords frequency from Twitter tweets. We firstly used TF-IDF method to filter out the candidates of keywords that is most relevant to stock price. Then based on these keywords, we systematically studied the testing error using cross validation for different number of keywords and unit time length. Finally, with the optimized keywords and unit time length, we plotted out the predicted stock price compared with the real stock price. We found that by using Gaussian kernel, SVM gives the lowest testing error, while Naïve Bayes catches pretty accurately the trend of stock price change over a longer period of time. Though limited by the available data size, the optimistic outcome opens a new approaching to real-time stock price prediction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stock price prediction using the Chaid rule-based algorithm and particle swarm optimization (pso)

Stock prices in each industry are one of the major issues in the stock market. Given the increasing number of shareholders in the stock market and their attention to the price of different stocks in transactions, the prediction of the stock price trend has become significant. Many people use the share price movement process when com-paring different stocks while investing, and also want to pred...

متن کامل

Stock Price Prediction using Machine Learning and Swarm Intelligence

Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...

متن کامل

Stock Market Prediction Using Twitter Mood

-In the modern times of the information age, the magnitude of social media activity has reached unprecedented levels. Twitter is one such popular online social networking and micro-blogging service, which enables hundreds of millions of users share short messages in real time about events worth broad attention expressing public opinion. In this paper, we investigate the relationship between Twi...

متن کامل

Multi-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks

Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...

متن کامل

Forecasting Stock Price using Hybrid Model based on Wavelet Transform in Tehran and New York Stock Market

Forecasting financial markets is an important issue in finance area and research studies. On one hand, the importance of prediction, and on the other hand, its complexity, have led to huge number of researches which have proposed many forecasting methods in this area. In this study, we propose a hybrid model including Wavelet Transform, ARMA-GARCH and Artificial Neural Network (ANN) for single-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014